
A microscopic treatment of the friction tensor of a polymer in dilute solution

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1977 J. Phys. A: Math. Gen. 10 2171

(http://iopscience.iop.org/0305-4470/10/12/024)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 13:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/10/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 10, No. 12, 1977. Printed in Great Britain. @ 1977 
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Abstract. Mode coupling techniques are used to derive, from the exact equation of 
motion, an expression for the diffusion tensor, and hence the friction tensor, of a polymer 
chain in dilute solution. This theory allows one to analyse the approximations needed to 
obtain an expression for the friction tensor similar to the usual hydrodynamic results, and 
provides a framework in which non-hydrodynamic contributions can be discussed. 

1. Introduction 

In the early theories of polymer dynamics the solvent was treated as a hydrodynamic 
continuum and most modern theories (see, for instance, Yamakawa 1971) also make 
use of a similar description of the solvent. In order to understand the basis of these 
hydrodynamic theories from a more microscopic point of view, several workers have 
considered the derivation of the Kirkwood diffusion equation from the exact equa- 
tions of motion (Yamakawa er a1 1974, Curtiss et a1 1976). There have also been 
several recent attempts to understand the relationship between the Kirkwood 
diffusion equation and the Rouse-Zimm equations (Bixon 1973, Zwanzig 1974, 
Altenberger 1975, Akcasu and Gurol 1976). 

An alternative approach for investigating the microscopic basis of these hydro- 
dynamic approaches is through mode coupling theory. In a previous paper (Kapral et 
a1 1976) we showed how Kirkwood’s expression for the diffusion coefficient of a 
polymer could be derived by considering the coupling of the local total monomer 
density to a bilinear variable involving the local momentum density of the fluid. In 
this calculation the coupling of the polymer to the fluid modes occurs naturally and 
does not require imposing a boundary condition. Such calculations are useful not only 
in terms of understanding the basis of hydrodynamic theories but also provide a 
framework in which one can extend these theories to a non-hydrodynamic regime 
(Duzy and Kapral 1977). 

In this paper we show how similar techniques can be used to derive expressions for 
the average diffusion tensor, and hence the friction tensor, of the polymer chain. In 
contrast to our earlier work, we focus on the dynamics of the individual monomers 
rather than on the dynamic structure factor of the entire polymer. 
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2. Mode coupling calculation of the friction coefficient 

We consider a single polymer chain composed of n monomers with mass m in a 
solvent. If the momentum of the jth monomer unit is pi ( j  = 1, . . ., n )  (we will hence- 
forth use Latin indices to denote monomer units) then the generalised average friction 
tensor of the polymer chain, [ ( z ) ,  can'be defined by the relation 

( p ( ~ ~ p + ~ ( p p + ~ - ' = ~ ( z ) / m ~ B ~  = (z +C(z) /m)- '  (2.1) 

where D ( z )  is the average diffusion tensor. Here pi = (pl ,  p2,  . . ., p"),  an argument z 
denotes the Laplace transform of the corresponding time-dependent variable and the 
angle brackets denote an equilibrium average in the canonical ensemble over all 
solvent and polymer phase space variables. 

In general the friction tensor consists of both microscopic and hydrodynamic 
contributions which arise from interactions between monomer units which occur via 
the solvent. Expressions for the zero frequency solvent averaged friction tensor which 
are based on calculations in which the solvent is described by hydrodynamic equations 
are well known. For example, in Kirkwood's theory the configuration averaged 
friction tensor is 

4x2 = 0 )  = (m+ 3 W ) P  (2.2) 

where (. . .)p denotes an average over all configurations of the polymer chain and T is 
the Oseen tensor: 

xi = (87~q&i)-'(l+&&), (2.3) 

with Rii = Ri -Rj  (Ri is the position of the ith monomer) and qo the solvent viscosity. 
In equation (2.2) the microscopic monomer friction is l. 

In this section we show how an expression for the friction tensor can be derived 
from the exact equations of motion using mode coupling techniques. The expression 
we obtain is similar to that in equation (2.2) but the Oseen tensor appears in a 
pre-averaged form. One can extract the hydrodynamic contribution to the friction 
tensor by investigating the coupling between the monomer momenta and the hydro- 
dynamic modes of the system. Since the hydrodynamic interactions between the 
monomers depend primarily on the viscous modes of the fluid (Kapral et a1 1976), we 
wish to consider the coupling between the monomer momenta and the total momen- 
tum density of the fluid (solvent plus polymer), g, : 

N 

, = 1  
g, = po-' 1 p ,  eiq"* 

where the sum on the Greek index p runs over all particles in the system N = n + N,, 
where N, is the number of solvent molecules, P O  is the total equilibrium mass density 
of the system, and r, is the position of the pth particle. Since the coupling of the pi to 
g, vanishes in the thermodynamic limit the simplest coupling of a monomer variable 
to a conserved fluid mode is through a nonlinear term. In contrast to our earlier work 
we consider a more microscopic description of the polymer chain and hence focus on 
the coupling to the bilinear variables gp!.,, where ni  is the Fourier transform of the 
local density of the lth monomer 

I iq.R, n q = e  , (2.5) 
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This bilinear variable represents the fluid momentum density relative to the position 
of the lth monomer. 

A treatment of the friction can be carried out which only includes the coupling of 
the momenta to these bilinear variables; this will be described in 8 3. The structure of 
equation (2.2) suggests that it is appropriate to consider a description where the force 
which the jth monomer exerts on the fluid, 4, is explicitly included. Hence, we 
consider a description based on the set of suitably orthogonalised variables, 

where 

xji(4) = (exp[iq - (Ri - Rj) l )~ .  (2.8) 
In order to derive generalised Langevin equations we construct a Mori projection 
operator, 9, which projects an arbitrary dynamical variable, 8, onto these variables 

(2.9) 
where F = p. The random forces corresponding to the variables in equation (2.6) are 

f f =  (1 -S)iLpi = 0 

(2.10) 

n 

i . l= 1 
f r (4 )  = B;- ((iLB;)E;:) . ( ( ~ ~ ~ ) - ' ) i i .  F,. 

In equations (2.10) L is the Liouville operator of the entire system. The generalised 
Langevin equations follow from the application of the operator identity ( A  +B)-' = 
A-' + ( A  + B)-'BA-' with A = z + (1 - 9)iL and B = BiL to the random forces in 
equation (2.10) (Kapral er a1 1976). We obtain 

Z P ( Z 1 - P  =Wz) (2.11) 

In these equations the damping matrix element dF is 

@(z)= ( f F ( Z ) f F t > .  (SFt)-'. (2.14) 

For a dilute polymer solution (dropping terms O ( n / N ) )  

(2.15) 
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where we have in addition made the factorisation assumption (gini,gY,a$) = 
(g:g!,,)(nf,ni,), where gi is the momentum density of the solvent. It is this ap- 
proximation which makes q5B diagonal in q. The non-linear streaming terms are 
defined by 

D Ng, R Kapral and S G Whittington 

(2.17) 

In order to calculate the ( p ( z ) p + )  correlation function and hence the friction from 
equation (2.1 1) we need to compute (F(z)pt). Postmultiplying equations (2.12) and 
(2.13) by pt and averaging yields 

+ v-' 1' V F B ( q ) .  (2 +q5B(q, z))-l. VBF(q) .  (F(z)pt). (2.18) 

Postmultiplying equation (2.13) by Bi ,  averaging and substituting into equation (2.18) 
gives 

(F(z )p t )  = - ( z  +q5F(z)- V-'l0 dt e-" 1' VFB(q) .  (B,(t)Bi).  (B,B;)-' . VBF(q))-' 

P 

m 

P 

(2.19) 

Again for the dilute polymer solution considered here we may approximate 

(2.20) t -1- -1 Po (w)B;) (W,) - (gi(t)n-,(tlg:,n,) x ( 4 )  kBTV' 

If we now make a dynamical factorisation approximation on the correlation function 
appearing in equation (2.20) we obtain 

(B,(t)B:) (B$:)-' = GXt)G~&), (2.21) 

where the propagators are defined by 

(2.22) 

(2.23) 

Using equation (2.21) in equation (2.19), keeping only the transverse part of the 
propagator G,B, and inserting the resulting expression for (F(z)pt) into equation (2.11) 
after averaging with pt we find 

( P ( d P + >  (PP7- l  
r "OD = L Z + ( Z + ~ ~ ~ ( Z ) - J  dte-z 'V-lx '  

0 P 

2 
x VFB(q) .  G,"(t). B")G,"(t)BA. VSF(q)) - ' .  m]-' 

A = l  mkB T 
(2.24) 
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Here f A  is a member of an orthogonal set of unit vectors with f 3  along q. Comparison 
with equation (2.1) yields an expression for the generalised friction tensor, C(r). If the 
mode coupling contribution in equation (2.24) is dropped then we sdefine the resul- 
ting 'bare' friction as 

C * ( f ) =  (f +4"(f))-' .  ( m t ) / k B T .  (2.25) 

Using this definition the full friction which follows from equation (2.24) can be written 
in the form 

C(f )=( l+C*(2)*T(2) ) -1  * [ * ( z ) ,  (2.26) 

where 
2 

T ( 2 )  = . - k;T/om dt e-" E' 1 V m ( q ) .  & A ( & * .  GqB(f). fA)G,"(r)BA. VBF(q) .  
q A = l  

(2.27) 

Note that in the zero-frequency limit equation (2.26) has a structure similar to that of 
equation (2.2) where C*(O) corresponds to the monomer friction. We shall show that 
~(0) is, in a certain approximation, equal to the pre-averaged Oseen tensor. In order 
to carry out this analysis we shall consider the structure of the streaming terms, V m  
and V"". Inserting equation (2.7) into equation (2.16) we obtain 

vm (4) = ( k B  T)-'(FFt) - ~F( i&+, ) t )X(q ) - ' .  (2.28) 

The first term does not depend on q and the second term is at least of order q2  since 
g,n-, is conserved and (F(iLg,n-,)+) is even under the parity operation. If the matrix 
elements are scaled by a, the diameter of a monomer, we see that the second term 
contains factors O((qa)2) and higher compared to the first. Since the sum on in 
equation (2.27) is restricted to values q S q o ,  where qo is a macroscopic wavevector, 
the product qoa << 1 and hence the contribution of the second term in equation (2.28) 
relative to that of the first will be small. Thus, if we only retain the first term in 
equation (2.28) and use a similar approximation for VBF we find 

kBT 

(2.29) T ( 2 )  = - 1 "  I dt e-"E' E E r A * A  E (E * A  . G,B(t).&A)G,"(t),y(q). 
POV 0 q A = l  

To reduce equation (2.29) further we assume that the propagators can be evaluated in 
the hydrodynamic limit: 

(4" G,B(t). 4A)Gg"(t)~exp[-q2(~ol+D)t]==exp(-q2v~t)l, (2.30) 

where vo is the kinematic viscosity of the solvent, vo = ~ O / P O ,  D is the diffusion tensor 
and 1 is a unit tensor. The last approximation makes use of the fact that the viscous 
modes decay much more rapidly than the diffusive modes. Since the diagonal ele- 
ments of x(q)  are unity, the diagonal part of ~ ( 2 )  will depend strongly on 40. 
However, for most models of a flexible polymer chain the off-diagonal elements of 
~ ( 4 )  decay sufficiently rapidly so that the dependence on q o  is negligible. Hence, T ( Z )  
can be written as 
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with a2 = t /uO,  where the frequency-dependent Owen tensor is given by 

Ti&) = (471-q&)-'[(e-"~4 + Q(aRij))l- (e-uRu + 3Q(&j))&#ij], 
where 

(2.32) 

C?(X)=X-2[e-"(1 +X)- 1). 

We have therefore written r ( z )  as the sum of a hydrodynamic contribution to the 
monomer friction and a term involving the Oseen interactions between the 
monomers. Because of the choice of projection operator, F(z)  in equation (2.25) did 
not contain the hydrodynamic contribution to the monomer friction. If we now define 
an effective monomer friction, C,,,(z), as 

(2.33) 

(2.34) 

It is clear that this equation is of the same form as equation (2.2). lm(z) is the 
microscopic friction tensor and contains a mode coupling contribution. This contri- 
bution depends on the cut-off wavevector which is proportional to the inverse size of 
the monomer units. Equation (2.34) is in one sense more general than equation (2.2) 
in that the full frequency dependence of the hydrodynamic interactions is taken into 
account. However, the Oseen tensor appears in a pre-averaged form. 

The calculation described in 9 2  differs from most mode coupling calculations of 
single-particle properties in that the coupling of the forces to momenta are explicitly 
included. On the basis of these earlier calculations one would expect that the cal- 
culation could be carried out by considering only the direct coupling of the monomer 
momenta to B9. Although such a calculation can be performed, there are interesting 
differences from that described in the previous section. The technically interesting 
difference is that the coupling matrix elements are frequency dependent rather than 
equal-time correlation functions. This makes the analysis of the coupling matrix 
elements more complex and a simple approximation, analogous to that adopted in the 
previous section, leads to a result for C(z) which corresponds to the first term in the 
expansion of the matrix inverse in equation (2.34). 

Considering the variable (p, Bq} and the projection operator 

and carrying out a calculation similar to that described in 0 2 we find 

where the bare friction tensor co(z) is 

& ( Z ) =  ({[Z +- (1 - ~ ) ~ ] - ' F } F t ) / k ~ ~  
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and the mode coupling contribution g ( z )  is 

6g(z)= - V-' E' 

The dynamical coupling matrix elements are defined by 

aD 2 
A"(4,z). dA[ dt e-"(d*. Gb(t). d*)G;(t)d*. ABP(q, 2). 

q A - 1  0 

(3.4) 

(3.5) 1 Po APB(4, 2) = ({[z  + (1 - 9')iL]-'F)lkI)X(q)- - 
keT 

and 

AB' (4, z ) = ({ [ + ( 1 - 9' NI-' &}Ft)/ ke T. (3.6) 

A comparison of equations (3.2) and (2.24) shows that in the present calculation 
the mode coupling contribution is to the friction itself, while in the earlier calculation 
the mode coupling contribution appears as a term in the inverse friction. An explicit 
calculation of the friction using equation (3.4) requires an analysis of the dynamical 
coupling matrix elements APE and ABp. As in $2 ,  we use equation (2.7) to write 

- 1 p o  
ApB(4, z)= - l o ( Z ) + ( { [ z  + ( 1 - ~ ) i L l - ' F } ( i ~ - , ) ' )  .x(q)  keT 

with an analogous expression for ABp(q, z). Once again using parity one can show that 
the second term in equation (3.7) is O((aq)') and can be neglected in comparison with 
the first. Following 8 2 we finally obtain 

(3.7) 

W )  = - S o b )  (M(q0) + (T(z  ))PI l o ( Z  1, (3.8) 
and 

S0*(z) = 40(z)-M(qoMo(z) Cob). (3.10) 

The resulting expression for g(z)  has a structure similar to an expanded form of 
equation (2.34). However, because of the difference in the projection operators in the 
two calculations the second mode coupling calculation does not provide as complete a 
separation of the hydrodynamic and microscopic contributions. 

4. Conduding remarks 

The aim of the present work has been the derivation, from a microscopic point of 
view, of the friction tensor of a polymer chain. Standard calculations (Yamakawa 
1971) take a macroscopic point of view. The solvent is treated as a continuum and the 
interactions between the monomers and the solvent molecules are accounted for by 
boundary conditions. When the monomers are small and comparable in size to the 
solvent molecules it is not clear that such a description is appropriate. However, since 
the resulting expression for the friction tensor (equation (2.2)) has a wide range of 
applicability, it is of interest to examine how such a form can be obtained from a 
microscopic theory and to provide a framework for extensions of this result. The 
calculations presented in this paper begin such a programme. 
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It is useful to compare our result for the friction tensor (equation (2 .34) )  with that 
in equation (2.2).  Since equation (2 .2 )  gives the zero-frequency friction tensor we first 
consider this limit. Our expression for c(z = 0) differs from that in equation (2 .2 )  in 
two respects. First, as noted earlier, we obtain a result in which the Oseen tensor 
appears in a pre-averaged form. We will return to a discussion of this point below. 
Second, we obtain a much more general form for the microscopic friction cm(z = 0). In 
the usual description the microscopic friction tensor is taken to be diagonal with 
elements &!jij, where 5 = 67rv0(a/2) for stick boundary conditions. Our result for &.,,(O) 
has the form 

cm(O) = [g*(O)-' + ( 3 ~ * 7 0 ) - ' q 0 1 ] - ' ,  

where c*(O) is the 'bare' friction defined in equation (2.25).  If the 'bare' friction is 
dropped in this equation we have & , ( O ) = 6 q O ( v / 2 q o ) ,  a result similar to the hydro- 
dynamic result with an effective radius equal to 7r/2qo. In a more complete theory the 
solvent-monomer collision dynamics will provide a natural cut-off in the theory and 
remove the explicit dependence on qo. However, for small monomer units the 
microscopic friction may be dominated by the 'bare' part as is evidenced by the utility 
of the Enskog binary collision approximation for the transport properties of dense 
fluids, In addition, as can be seen from equation (2.25),  e* also includes the direct 
interactions (i.e. non-hydrodynamic) between the monomer units and therefore in- 
corporates the full internal dynamics of the chain. The explicit calculation of &* is 
difficult but can be carried out for simple models. 

The full frequency dependence of C(z) given in equation (2 .34)  will manifest itself 
only at rather high frequencies. For example, the frequency dependence of ( Fj(z))p 
will be important for z - vo/li -ill2, where 1 is the bond length. For typical values of 
the kinematic viscosity and polymer size this yields frequencies in the range 
lo9 s-'. In equation (2 .34)  the microscopic friction tensor is also frequency depen- 
dent, but this frequency dependence will be important only in the higher portion of 
the frequency range given above. We note that although the hydrodynamic contribu- 
tion (proportional to M(qo)) depends explicitly on the cut-off wavevector, for small 
a/qo this contribution has a structure similar to the frequency-dependent friction in a 
hydrodynamic calculation (Landau and Lifshitz 1966). Thus, for many applications 
the zero-frequency approximation will be adequate, but the frequency dependence 
may be detectable in certain scattering experiments. 

Another aspect of the present calculation is the framework it provides for more 
refined calculations of the friction tensor. One such example can be seen from a 
consideration of equation (2.29).  In the reduction of equation (2 .29)  to the pre- 
averaged Oseen tensor in equation (2.3 1 )  hydrodynamic forms for the propagators 
G,'(t) and G,"(t) have been used. For a Gaussian chain ,yij(q) has the form xi j (4)= 
exp(-i1*q21i-j)). Thus, for small l i - j l  the significant values of q in the sum in 
equation (2 .29)  can be as large as lo8 cm-'. For these large wavevectors the above 
mentioned hydrodynamic forms for the propagators are not adequate. Other ap- 
proximations for the propagators which take fuller account of the solvent properties 
and are valid for larger q can be used in equation (2.29) and will lead to an improved 
description. 

We have mentioned earlier that the present result involves the Oseen tensor in a 
pre-averaged form. Since the projection operator formalism is in principle exact, this 
approximate form is probably related to our use of the factorisation approximation in 
evaluating certain correlation functions. One possible way of avoiding this difficulty is 



Polymer friction tensor 2179 

to make use of a different projection operator which involves a full phase space 
description of the polymer in both the linear and non-linear variables. This will lead 
to a generalised Fokker-Planck equation. 

Finally we note that using equations (2.1) and (2.34) it is easy to calculate the 
diffusion coefficient of the centre of mass of the polymer and the result is identical to 
that obtained earlier (Kapral et a1 1976). However, it is important to notice that the 
present calculation is more microscopic and amounts to giving two further orders in a 
continued fraction expansion (Mori 1965). 
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